Digi-Star



National & World Ag News Headlines
Researchers Developing, Testing Nanovaccine to Protect Against Flu
USAgNet - 01/03/2018

For many of us, a flu shot is a fall routine. Roll up a sleeve, take a needle to the upper arm and hope this year's vaccine matches whichever viruses circulate through the winter.

The most common method to make that vaccine is now more than 70 years old. It requires growing viruses in special, pathogen-free chicken eggs. It's not a quick and easy manufacturing process. And, at best, it provides incomplete protection.

Researchers from Iowa State University, the University of Iowa and the University of Wisconsin-Madison -- all of them affiliated with Iowa State's Nanovaccine Institute -- are working together to develop and test what they think could be a better way to fight the flu.

"What we're doing is a completely new approach," said Thomas Waldschmidt, the associate director of the Nanovaccine Institute, the Clement T. and Sylvia H. Hanson Chair in Immunology and a professor of pathology at Iowa. "This is a completely different ball game."

What the researchers are doing is loading synthesized influenza proteins into nanoparticles. Those nanoparticles are about 300 billionths of a meter across and are made from biodegradable polymers. The nanoparticles are incorporated into a nasal spray and delivered with a sniff. Based on preliminary studies, researchers believe the nanovaccine will activate both kinds of immune cells (T cells and B cells) and provide protection in the upper airway (the nose, throat and voice box) and the lower airway (the windpipe and lungs).

All of that could mean better flu protection than today's typical flu shot.

The National Institutes of Health is supporting the study of a flu nanovaccine with a five-year, $2.8 million grant.

Kevin Legge, an associate professor of pathology at Iowa, is leading the study. The research team also includes Waldschmidt; Balaji Narasimhan, the director of the Nanovaccine Institute and an Anson Marston Distinguished Professor in Engineering and the Vlasta Klima Balloun Chair in Chemical and Biological Engineering at Iowa State; and Thomas Friedrich, an associate professor of pathobiological sciences at Wisconsin.

So far, the researchers have tested a flu nanovaccine on mice, ferrets and pigs. The current study also calls for tests on monkeys.

Legge said today's flu vaccines activate B cells and their production of antibodies. Those antibodies circulate throughout the body and attack viruses by binding to them, coating them and disabling them. Antibodies also signal other defensive cells to attack and destroy the virus.

Rodent studies have shown that the flu nanovaccine drives B cell as well as T cell activity, Legge said. T cells fight disease by attacking cells that have been infected by a virus.

Activating both B cells and T cells provides "a greater level of protection," Legge said. "This is a more complete, robust response to vaccination."

Legge and Narasimhan said the nanovaccine also seems to be better at building immunity in the lungs than current flu shots or the flu mist that was common several years ago and is no longer recommended by the Centers for Disease Control and Prevention.

Narasimhan said there are other advantages to a flu nanovaccine: it can easily be loaded with proteins synthesized from many different types of flu, it can be modified and produced quickly (the researchers call it "plug-and-play" technology) and it can be safely stored for long periods at room temperature.

Send this article to a friend


Other National Headlines

Easy Way Cattle Care
Agromatic
Copyright 2018 - USAgNet.com. All Rights Reserved.